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Abstract
A discrete stochastic process with stationary power law distribution is obtained
from a death-multiple immigration population model. Emigrations from the
population form a random series of events which are monitored by a counting
process with finite-dynamic range and response time. It is shown that the power
law behaviour of the population is manifested in the intermittent behaviour of
the series of events.

PACS numbers: 05.40.−a, 05.49Df, 89.75.−k

The connectivity of complex networks [1] and microdynamical transport properties of
sandpile cellular automata [2] are aspects of complex systems that are described by discrete
random variables with probability distribution functions (PDFs) having power law tails. The
continuous analogue of such random variables are the stable or Lévy distributions [3], and these
can model fluctuations in diverse non-equilibrium physical [4], biological [5] and financial
[6] complex systems. Such distributions describe fluctuations of a scale-free or fractal nature,
the moments for which do not generally exist. Whilst instances of single fold random
variables with these characteristics abound, stationary random processes describing these
fluctuations have not, hitherto, been derived using techniques of classical stochastic processes.
Here, a discrete Markov stochastic process with a ‘stable’ law is derived by generalizing a
population model originally motivated by non-classical photon fluctuation phenomena [7, 8].
Emigrations from the population form a series of events that are monitored with a counting
process of finite-dynamic range and response time. The counting process is modelled by
‘clipping’ the time series, saturating naturally events occurring in the tail of the distribution
and thereby regularizing the fluctuations so that the moments of their probability distributions
exist. Statistical measures of the clipped time series, such as its mean, autocorrelation and the
PDF for times to the first count and between counts, nevertheless display characteristics of the
scale-free nature of the parent population.

The population evolves according to a death-multiple immigration model. The population
size increases through immigration of singles, pairs, . . . m-tuplets . . . , which arrive at rates

0305-4470/02/490745+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK L745

http://stacks.iop.org/ja/35/L745


L746 Letter to the Editor

αm � 0, and is depleted at a constant rate µ by deaths that occur in proportion to the
instantaneous size of the population. The rate equation for this process,

dPN(t)

dt
= µ(N + 1)PN+1 − µNPN − PN

∞∑
m=1

αm +
N∑

m=1

αmPN−m (1)

describes the evolution ofPN(t), the probability that the population comprises N members at
time t. This model is at once a simplification and generalization of known processes. The
situation when births are incorporated into the above and the immigrants arrive singly leads to
the birth–death–immigration (BDI) process [9]. The stationary solution for this process is the
negative binomial distribution, and for a specific choice of parameters the model describes the
Bose–Einstein fluctuations of thermal light. Properties of this process have intermediate power
law regimes for a range of parameters [10], but the single fold stationary distribution does not
have the characteristic scale-free property that is a hallmark of the complex behaviour. The BDI
model also describes the laser below threshold, where stimulated and spontaneous emission
of photons in a cavity is analogous to birth and immigration, and absorption corresponds to
deaths. Another variation of the process given by equation (1) was motivated by modelling
non-classical or ‘squeezed’ light [8] and obtains when the immigrants arrive in pairs [7].
Whilst the correlation properties of this and the BDI processes are similar, the stationary state
differs markedly, exhibiting odd–even effects.

The process described by equation (1) has no births, but extinction of the population is
prevented by the continual arrival of immigrants. The solution of equation (1) can be found
using the generating function Q(s; t) = 〈(1 − s)N 〉 = ∑∞

N=0 (1 − s)NPN(t) from which
factorial moments and probabilities can be determined [7]:

〈N(N − 1)(N − 2) · · · (N − r + 1)〉
〈N〉r =

(
− d

ds

)r

Q(s; t)

∣∣∣∣
s=0

PN(t) = 1

N!

(
− d

ds

)N

Q(s; t)|s=1. (2)

The single fold generating function satisfies the partial differential equation

∂Q

∂t
= −µs

∂Q

∂s
+

[ ∞∑
m=1

αm((1 − s)m − 1)

]
Q

with boundary conditions Q(0, t) = 1, and Q(s; 0) = Q0(s) = (1 − s)Mwhich imply
the probability distribution has unit normalization at all times and that the population
initially has M members present. Consider the specific choice of coefficients αm =
−a�(m − ν)/(�(−ν)m!). These are all positive only if 0 < ν < 1 and yield the PDE

∂Q

∂t
= −µs

∂Q

∂s
− asνQ

with solution

Q(s; t) = Q0(s exp(−µt))QE(s; t) = (1 − s exp(−µt))M exp

[
−asν

νµ
(1 − exp(−νµt))

]
.

(3)

Ostensibly the stationary solution Q(s; ∞) = Qst (s) = exp(−asν/νµ) has similar structure
to the characteristic function of the continuous stable distributions, although Qst (s) is the
generating function of a discrete distribution, giving a power law tailPN ∼N−(1+ν) with index
in the range −1 to −2. Note that the case ν = 1 does not have a power law tail but rather
generates the Poisson distribution. Figure 1(a) shows an example of the evolution to the
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Figure 1. Temporal evolution of the PDF of the death-multiple immigration population model
initiated with M = 5 with ν = 1/2, a = 1 and death rate µ = 2 for times µt = 0 (�) , 0.2 (�),
2 (�) and ∞ (�). The N−3/2 tail of the distribution is established immediately.
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Figure 2. Immigration rates αm as function of the order of the m-tuplet for ν = 1/4, 1/2 and 3/4.

stationary PDF from the initial state PN(0) = δN,M with M = 5 for when ν = 1/2 and
µ = 2.1 The tail of the distribution is established immediately, implying the moments do not
exist for any t > 0. This is because the rates αm permit a large number of immigrants to enter
the population with probability that falls off like a power law. Figure 2 shows the coefficients
αm for values ν = 1/4, 1/2 and 3/4, and these have an inverse power law dependence on
m, αm ∼ 1/m1+ν . Models describing the scale-free growth of the WWW are predicated
upon preferential attachment, whereby highly connected sites attract more connections than
those less well connected [1]. The rate at which connections are added to the system
could then have a power law asymptote that is similar to the αm. It should be stressed,
however, that the form adopted by the rates is not necessarily reflected by the stationary
solution of the process. For example, the geometrical or thermal model αm = ξm with
0 < ξ < 1 is one member of the negative binomial class of distributions, but immigrations
described by these rates generate the entire negative binomial class, Qst (s) = (1 + N̄s/β)−β

with N̄ = ξ/µ(1 − ξ)2 and β = 1/µ(1 − ξ) [11].

1 The PDF for the case ν = 1/2 has a closed form solution with stationary law PN = 2π−1/2(a/µ)N+1/2

×KN−1/2(2a/µ), where Kν (z) is a modified Bessel function [13].
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The Markovian nature of the death-multiple immigration process implies that the joint
generating function, which describes the population having sizes N and N ′ following a
separation time t, can be deduced from the stationary solution together with equation (3),
conditioned upon there being N members initially present, namely

Q(s, s′; t) = 〈(1 − s)N(1 − s ′)N
′ 〉 =

∞∑
N ′=0

Q(N)(s; t)PN ′(1 − s ′)N
′

= exp

[
− a

νµ
(sν(1 − exp(−νµt)) + (s′ + (1 − s ′)s exp(−µt))ν)

]
(4)

from which joint distributions and, in principle, autocorrelation and higher order statistical
measures can be obtained. However, because the joint probabilities also have power law tails,
the autocorrelation function is not defined. A noteworthy property of equation (4) is that it is
not invariant to the interchange of s with s′, which implies that the death-multiple immigration
population model does not possess a doubly stochastic representation. Hence, the population
cannot be regarded as evolving in response to a continuous random fluctuation: in quantum
optics terms [8], the process is non-classical. Equations (3) and (4) provide a closed form
solution for the single fold and joint evolution of a stochastic process with discrete power law
stationary distribution. The question now arises as to how the fluctuations and their evolution
can be measured given that moments of the population do not exist.

There are circumstances where it may be impossible to make a direct measurement of the
population but rather only some external manifestation of its evolution. Many experimental
situations externally monitor evolution by counting the number n of emigrants that leave the
population at rate η. These emigrations form a series of events that can be counted in time
intervals of duration T, the integration time. Formulating the externally monitored counting
process necessitates introducing the joint probability distribution pN(n; T ) for N individuals
present in the stationary population, and with n emigrants having been counted in the
integration time interval [0, T ]. Evolution of the monitored time series follows by modelling
the counted emigrants through an additional death process [12], requiring the inclusion of terms
η(N + 1)pN+1(n; T ) − ηNpN(n; T ) to the RHS of equation (1). This new rate equation is
solved with the aid of the joint counting generating function Qc(s, z; T ) = 〈(1 − s)N (1 − z)n〉
that satisfies the PDE

∂Qc

∂T
= (ηz − µ̄s)

∂Qc

∂s
− asνQc.

The solution of this equation is initiated from the stationary state of the population, so that
Qc(s, z; 0) = Qst (s) and

Qc(s, z; T ) = Qst (�) exp

( −a

(1 + ν)ηz
(�ν+1F(1 + ν, 1, 2 + ν; µ̄�/ηz)

− sν+1F(1 + ν, 1, 2 + ν; µ̄s/ηz))

)

with �(s, z; T ) = [ηz + (µ̄s − ηz) exp(−µ̄T )]/µ̄,µ̄ = µ + η a composite death rate,
and F(a, b, c; x) the hypergeometric function [13]. Denoting Qc(z; T ) = Qc(0, z; T ) in
conjunction with equation (2) and differentiating with respect to the z variable obtains factorial
moments and distribution for the counted population. The counting distribution also possesses
a power law tail for all integration times T, an observation that distinguishes this integrated
process from those with finite mean, which necessarily become Poissonian in the large T limit.
Using the method of [14] enables time series for the process to be obtained, one realization
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Figure 3. A realization of the counted series of events with µ̄ = 2, with other parameters identical
to figure 1. The integration time T = 5. The emanations show wide variability in the size of the
events and also in the times of their occurrence.

being illustrated in figure 3 with the same parameters as for figure 1. Note the variation in size
and the intermittent nature of the emissions, both being manifestations of the power law PDF.

Any counting method saturates in excess of its dynamic range. This limitation can be
idealized by clipping the time series, an extreme form of which is hard limiting [15] which
forms the binary stream:

c(t, T ) =
{

0 n (t, T ) = 0
1 n (t, T ) > 0

the statistics for which are well defined irrespective of divergent moments in the underlying
monitored population. The mean of the clipped counts c̄ is finite and higher moments 〈cr〉 = c̄.
Whilst clipping suppresses size variations, the characteristic intermittency is retained, and this
property contains information about the power law PDF of the population. The generating
function of the clipped counting distribution Qcl(z; T ) is particularly simple since the data
comprise only 0’s and 1’s:

Qcl(z; T ) = p(0, T ) + (1 − z)(1 − p(0, T )) = Qc(1; T ) + (1 − z)(1 − Qc(1; T )).

The mean c̄(T ) = 1 − Qc(1; T ) depends on the integration time, and for small T this does not
increase linearly but rather has the power law dependence, c̄(T ) ∼ (a/νµ̄)(ηT )ν +O((ηT )2ν),
indicating that even the most severely limited integrated counting measurements retain a vestige
of the scale-free behaviour of the monitored population. For large integration times the clipped
mean saturates at unity illustrated in figure 4(a). The clipped autocorrelation function can
be found using the joint distribution for counting one emanation in two non-overlapping
integration periods of length T, separated by an interval �t [7, 14]. For ηT � 1 and zero
delay time,

lim
�t→0

〈c(0, T )c(T + �t, T )〉
c̄(T )2

= 2µ̄ν

a

(
1 − 1

21−ν

)
(ηT )−ν

whose divergence for small T indicates the non-existence of the moments of the parent
population.

Another measure of the time series is w0(τ ), the probability density for the time τ to the
first count [7]:

w0(τ ) = −∂Qcl(1; τ)

∂τ
= −∂Qc(1; τ)

∂τ
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Figure 4. (a) Illustrating the dependence of the clipped mean on the integration time T . The dashed
line shows the power law asymptote. Parameters used are the same as for figure 3. (b) Probability
density for the time to the first and inter counting events shown by the full and long-dashed lines
respectively, together with their asymptotes shown by short-dashed lines. The parameters are as
for figure 3 and the inner scale τ0 = 0.000 01.

shown in figure 4(b). At small times this has asymptote w0(τ ) ∼ a(η/µ̄)ν(µ̄τ )−(1−ν), but for
large times the tail of the distribution is exponential reflecting the finite-correlation time of
the fluctuations. The scaling of c̄ with T implies that the apparent rate of occurrence of events
c̄/T increases with increasing resolution. This observation necessitates introducing an inner
time scale τi below which no counts are recorded, whereupon the probability density w1 (τ )

for the times τ between events [16] can be defined:

w1(τ ) = 〈τ̇ (τi)〉−1 ∂2Qc(1; τ)

∂τ 2
= τi

c̄(τi)

∂2Qc(1; τ)

∂τ 2
= 1

w0(τi)

∂2Qc(1; τ)

∂τ 2
, τi � τ < ∞

and is illustrated in figure 4(b).
This letter has introduced a discrete stochastic population process governed by births

and multiple immigrations. The stationary probability distribution is the discrete analogue
of the continuous stable probability densities for a particular choice of immigration rates.
Emigrations from this population form a series of discrete events that can be monitored by a
counting process of finite-dynamic range and response time. This enables finite measures of
integrated statistics to be defined that have embedded power law regimes at small integration
times. The power law PDF of the discrete population is transferred to the intermittent behaviour
of the series of events. The population model described here can easily be generalized to
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include births, obtaining a different process that can nevertheless have similar stationary
states, however the temporal evolution would be different and could be distinguished by the
measurement process. The detection methodology suggests generic means for characterizing
intermittent time series that exploit properties of the underlying stochastic process rather than
employing taxonomic classification by PDFs alone. An important application of this type
of Markovian multiple immigration model will be to provide a simple means of generating
temporal data possessing a wide range of stochastic behaviour [11], including those describing
complex systems.
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